Bewegende gemiddelde Hierdie voorbeeld leer jy hoe om die bewegende gemiddelde van 'n tydreeks in Excel te bereken. 'N bewegende avearge gebruik te stryk onreëlmatighede (pieke en dale) om maklik tendense herken. 1. In die eerste plek kan 'n blik op ons tyd reeks. 2. Klik op die blad Data, kliek Data-analise. Nota: cant vind die Data-analise knoppie Klik hier om die analise ToolPak add-in te laai. 3. Kies bewegende gemiddelde en klik op OK. 4. Klik op die insette Range boks en kies die reeks B2: M2. 5. Klik op die boks interval en tik 6. 6. Klik in die uitset Range boks en kies sel B3. 8. Teken 'n grafiek van hierdie waardes. Verduideliking: omdat ons die interval stel om 6, die bewegende gemiddelde is die gemiddeld van die vorige 5 datapunte en die huidige data punt. As gevolg hiervan, is pieke en dale stryk uit. Die grafiek toon 'n toenemende tendens. Excel kan nie bereken die bewegende gemiddelde vir die eerste 5 datapunte, want daar is nie genoeg vorige datapunte. 9. Herhaal stappe 2 tot 8 vir interval 2 en interval 4. Gevolgtrekking: Hoe groter die interval, hoe meer die pieke en dale is glad nie. Hoe kleiner die interval, hoe nader die bewegende gemiddeldes is om die werklike data punte. Hou jy van hierdie gratis webwerf Deel asseblief hierdie bladsy op Google25 een maat van die akkuraatheid van 'n voorspelling model Hierdie voorskou vertoon bladsye 6ndash10. Sluit aan by die volle inhoud te sien. 25. Een maatstaf van die akkuraatheid van 'n voorspelling model is 'n. die glad konstante b. 'n seisoen gezuiverde tydreekse c. Intussen vierkante fout d. Nie een van hierdie alternatiewe is korrek. 26. 'n Kwalitatiewe vooruitskatting metode wat voorspellings verkry deur groep konsensus staan bekend as die a. Outoregressiewe model b. Delphi benadering c. beteken absolute afwyking d. Nie een van hierdie alternatiewe is korrek. Uitstalling 18-2 Oorweeg die volgende tydreekse. t 1 2 3 4 Y i 4 7 9 10 27. Verwys uit te stal 18-2. Die helling van lineêre tendens vergelyking, b 1. 'n. 2.5 b. 2.0 c. 1.0 d. 1.25 28. Verwys uit te stal 18-2. Die afsnit, b 0. is '. 2.5 b. 2.0 c. 1.0 d. 1.25 29. Verwys uit te stal 18-2. Die voorspelling vir tydperk 5 is 'n. 10.0 b. 2.5 c. 12.5 d. 4.5 30. Verwys uit te stal 18-2. Die voorspelling vir n tydperk van 10 is 'n. 10.0 b. 25.0 c. 30.0 d. 22.5 Exhibit 18-3 Hierdie voorskou het doelbewus vaag afdelings. Sluit aan by die volledige weergawe te sien. Vooruitskatting 7 Dink aan die volgende tydreekse. Jaar (t) Y i 1 7 2 5 3 4 4 2 5 1 31. Verwys uit te stal 18-3. Die helling van lineêre tendens vergelyking, b 1. 'n. -1,5 B. 1.5 c. 8.3 d. -8,3 32. Verwys uit te stal 18-3. Die afsnit, b 0. is '. -1,5 B. 1.5 c. 8.3 d. -8,3 33. Verwys uit te stal 18-3. In watter tydperk die waarde van Y Ek bereik nul a. 0.000 b. 0,181 c. 5.53 d. 4.21 34. Verwys uit te stal 18-3. Die voorspelling vir n tydperk van 10 is 'n. 6.7 b. -6,7 C. 23.3 d. 15 8 Hoofstuk Agtien PROBLEME 1. Die verkope rekords van 'n maatskappy oor 'n tydperk van sewe jaar word hieronder getoon. Jaar Verkope (t) (In miljoene dollars) 1 12 2 16 3 17 4 19 5 18 6 21 7 22 a. Ontwikkel 'n lineêre tendens uitdrukking vir die bogenoemde tydreekse. b. Voorspel verkope vir tydperk 10. 2. Student inskrywing by 'n universiteit in die afgelope ses jaar word hieronder gegee. Jaar Inskrywing (t) (In 1000 s) 1 6,30 2 7,70 3 8,00 4 8,20 5 8,80 6 8,00 a. Ontwikkel 'n lineêre tendens uitdrukking vir die bogenoemde tydreekse. b. Voorspelling inskrywings vir vanjaar 10. 3. Die volgende tydreekse toon die verkope van 'n klerewinkel oor 'n 10-week periode. Verkope Week (1000 s) 1 15 2 16 3 19 4 18 5 19 6 20 7 19 8 22 9 15 10 21 n. Bereken 'n 4-week bewegende gemiddelde vir die bogenoemde tydreekse. Hierdie voorskou het doelbewus vaag afdelings. Sluit aan by die volledige weergawe te sien. Vooruitskatting 9 b. Bereken die gemiddelde vierkante fout (MSE) vir die 4-week bewegende gemiddelde skatting. c. Gebruik alfa 0,3 tot die eksponensiële gladstryking waardes bereken vir die tydreeks. d. Voorspel verkope vir week 11. 4. Die volgende tydreekse toon die aantal eenhede van 'n bepaalde produk verkoop oor die afgelope ses maande. Eenhede verkoop Maand (Duisende) 1 8 2 3 3 4 4 5 5 12 6 10 n. Bereken 'n 3-maande bewegende gemiddelde (gesentreer) vir die bogenoemde tydreekse. b. Bereken die gemiddelde vierkante fout (MSE) vir die 3-maande bewegende gemiddelde. c. Gebruik alfa 0,2 tot die eksponensiële gladstryking waardes bereken vir die tydreeks. d. Voorspel die volume verkope vir maand 7. 5. Die verkoopsvolumes van CMM, Inc. n rekenaar firma, vir die afgelope 8 jaar word hieronder gegee. Jaar Dit is die einde van die voorskou. Sluit aan toegang tot die res van die document. Moving gemiddelde en eksponensiële gladstryking modelle As 'n eerste stap in die beweging van buite gemiddelde modelle, ewekansige loop modelle, en lineêre tendens modelle, nonseasonal patrone en tendense kan geëkstrapoleer deur 'n bewegende-gemiddelde of glad model . Die basiese aanname agter gemiddelde en glad modelle is dat die tyd reeks is plaaslik stilstaande met 'n stadig wisselende gemiddelde. Vandaar, neem ons 'n bewegende (plaaslike) gemiddelde om die huidige waarde van die gemiddelde skat en dan gebruik dit as die voorspelling vir die nabye toekoms. Dit kan beskou word as 'n kompromie tussen die gemiddelde model en die ewekansige-stap-sonder-drif-model. Dieselfde strategie gebruik kan word om te skat en ekstrapoleer 'n plaaslike tendens. 'N bewegende gemiddelde is dikwels 'n quotsmoothedquot weergawe van die oorspronklike reeks, want kort termyn gemiddelde het die effek van gladstryking uit die knoppe in die oorspronklike reeks. Deur die aanpassing van die mate van gladstryking (die breedte van die bewegende gemiddelde), kan ons hoop om 'n soort van 'n optimale balans tussen die prestasie van die gemiddelde en die stogastiese wandeling modelle slaan. Die eenvoudigste soort gemiddelde model is die. Eenvoudige (ewe-geweeg) Moving Average: Die voorspelling vir die waarde van Y op tyd T1 wat gemaak word op tydstip t is gelyk aan die eenvoudige gemiddelde van die mees onlangse m waarnemings: (hier en elders sal ek die simbool 8220Y-hat8221 gebruik om op te staan vir 'n voorspelling van die tyd reeks Y gemaak op die vroegste moontlike voor datum deur 'n gegewe model.) Hierdie gemiddelde is gesentreer op tydperk t (M1) / 2, wat impliseer dat die skatting van die plaaslike gemiddelde sal neig om agter die werklike waarde van die plaaslike gemiddelde met sowat (M1) / 2 periodes. So, sê ons die gemiddelde ouderdom van die data in die eenvoudige bewegende gemiddelde is (M1) / 2 met betrekking tot die tydperk waarvoor die voorspelling is bereken: dit is die hoeveelheid tyd waarop voorspellings sal neig om agter draaipunte in die data. Byvoorbeeld, as jy gemiddeld die afgelope 5 waardes, sal die voorspellings wees oor 3 periodes laat in reaksie op draaipunte. Let daarop dat indien M1, die eenvoudige bewegende gemiddelde (SMA) model is soortgelyk aan die ewekansige loop model (sonder groei). As m is baie groot (vergelykbaar met die lengte van die skatting tydperk), die SMA model is gelykstaande aan die gemiddelde model. Soos met enige parameter van 'n voorspelling model, is dit gebruiklik om die waarde van k te pas ten einde die beste quotfitquot om die data, dit wil sê die kleinste voorspelling foute gemiddeld behaal. Hier is 'n voorbeeld van 'n reeks wat blykbaar ewekansige skommelinge toon om 'n stadig-wisselende gemiddelde. In die eerste plek kan probeer om dit aan te pas met 'n ewekansige loop model, wat gelykstaande is aan 'n eenvoudige bewegende gemiddelde van 1 kwartaal: Die ewekansige loop model reageer baie vinnig om veranderinge in die reeks, maar sodoende dit tel baie van die quotnoisequot in die data (die ewekansige skommelinge) asook die quotsignalquot (die plaaslike gemiddelde). As ons eerder probeer 'n eenvoudige bewegende gemiddelde van 5 terme, kry ons 'n gladder lyk stel voorspellings: Die 5 termyn eenvoudige bewegende gemiddelde opbrengste aansienlik kleiner foute as die ewekansige loop model in hierdie geval. Die gemiddelde ouderdom van die data in hierdie voorspelling is 3 ((51) / 2), sodat dit is geneig om agter draaipunte met sowat drie periodes. (Byvoorbeeld, blyk 'n afswaai het plaasgevind by tydperk 21, maar die voorspellings nie omdraai tot verskeie tydperke later.) Let daarop dat die langtermyn-voorspellings van die SMA model is 'n horisontale reguit lyn, net soos in die ewekansige loop model. So, die SMA model veronderstel dat daar geen neiging in die data. Maar, terwyl die voorspellings van die ewekansige loop model is eenvoudig gelyk aan die laaste waargenome waarde, die voorspellings van die SMA model is gelykstaande aan 'n geweegde gemiddelde van die afgelope waardes. Die vertroue perke bereken deur Stat Graphics vir die langtermyn-voorspellings van die eenvoudige bewegende gemiddelde nie groter as die vooruitskatting horison styg kry. Dit is natuurlik nie korrek Ongelukkig is daar geen onderliggende statistiese teorie wat ons vertel hoe die vertrouensintervalle behoort te brei vir hierdie model. Dit is egter nie te moeilik om empiriese ramings van die vertroue perke vir die langer-horison voorspellings te bereken. Byvoorbeeld, kan jy die opstel van 'n sigblad waarop die SMA model sal gebruik word om 2 stappe vooruit, 3 stappe vooruit, ens binne die historiese data monster voorspel. Jy kan dan bereken die monster standaardafwykings van die foute op elke voorspelling horison, en dan bou vertrouensintervalle vir langer termyn voorspellings deur optelling en aftrekking veelvoude van die toepaslike standaard afwyking. As ons probeer om 'n 9-termyn eenvoudige bewegende gemiddelde, kry ons selfs gladder voorspellings en meer van 'n sloerende uitwerking: Die gemiddelde ouderdom is nou 5 periodes ((91) / 2). As ons 'n 19-termyn bewegende gemiddelde te neem, die gemiddelde ouderdom toeneem tot 10: Let daarop dat, inderdaad, is die voorspellings nou agter draaipunte met sowat 10 periodes. Watter bedrag van smoothing is die beste vir hierdie reeks Hier is 'n tabel wat hulle dwaling statistieke vergelyk, ook met 'n 3-gemiddelde: Model C, die 5-termyn bewegende gemiddelde, lewer die laagste waarde van RMSE deur 'n klein marge oor die 3 - term en 9 termyn gemiddeldes, en hul ander statistieke is byna identies. So, onder modelle met 'n baie soortgelyke fout statistieke, kan ons kies of ons 'n bietjie meer responsiewe ingesteldheid of 'n bietjie meer gladheid in die voorspellings sou verkies. (Terug na bo.) Browns Eenvoudige Eksponensiële Smoothing (eksponensieel geweeg bewegende gemiddelde) Die eenvoudige bewegende gemiddelde model hierbo beskryf het die ongewenste eienskap dat dit behandel die laaste k Waarnemings ewe en heeltemal ignoreer al voorafgaande waarnemings. Intuïtief, moet afgelope data verdiskonteer in 'n meer geleidelike mode - byvoorbeeld, die mees onlangse waarneming moet 'n bietjie meer gewig kry as 2 mees onlangse, en die 2de mees onlangse moet 'n bietjie meer gewig as die 3 mees onlangse kry, en so aan. Die eenvoudige eksponensiële gladstryking (SES) model accomplishes hierdie. Laat 945 dui n quotsmoothing constantquot ( 'n getal tussen 0 en 1). Een manier om die model te skryf is om 'n reeks L dat die huidige vlak (dit wil sê die plaaslike gemiddelde waarde) van die reeks verteenwoordig as geraamde van data tot op hede te definieer. Die waarde van L op tydstip t is rekursief bereken uit sy eie vorige waarde soos volg: Dus, die huidige stryk waarde is 'n interpolasie tussen die vorige stryk waarde en die huidige waarneming, waar 945 kontroles die nabyheid van die geïnterpoleerde waarde tot die mees onlangse waarneming. Die voorspelling vir die volgende tydperk is eenvoudig die huidige stryk waarde: anders gestel ons kan die volgende voorspelling direk in terme van vorige voorspellings en vorige waarnemings uit te druk, in enige van die volgende ekwivalent weergawes. In die eerste weergawe, die voorspelling is 'n interpolasie tussen vorige skatting en vorige waarneming: In die tweede weergawe, is die volgende voorspelling verkry deur die aanpassing van die vorige skatting in die rigting van die vorige fout deur 'n breukdeel bedrag 945. is die fout gemaak by tyd t. In die derde weergawe, die voorspelling is 'n eksponensieel geweeg (dit wil sê afslag) bewegende gemiddelde met afslag faktor 1- 945: Die interpolasie weergawe van die voorspelling formule is die eenvoudigste om te gebruik as jy die uitvoering van die model op 'n spreadsheet: dit pas in 'n enkele sel en bevat selverwysings verwys na die vorige skatting, die vorige waarneming, en die sel waar die waarde van 945 gestoor. Let daarop dat indien 945 1, die SES model is gelykstaande aan 'n ewekansige loop model (sonder groei). As 945 0, die SES model is gelykstaande aan die gemiddelde model, met die veronderstelling dat die eerste stryk waarde gelyk aan die gemiddelde is ingestel. (Terug na bo.) Die gemiddelde ouderdom van die data in die eenvoudige eksponensiële-glad voorspelling is 1/945 relatief tot die tydperk waarvoor die voorspelling is bereken. (Dit is nie veronderstel duidelik te wees, maar dit kan maklik aangetoon deur die evaluering van 'n oneindige reeks.) Dus, die eenvoudige bewegende gemiddelde voorspelling is geneig om agter draaipunte met sowat 1/945 periodes. Byvoorbeeld, wanneer 945 0.5 die lag is 2 periodes wanneer 945 0.2 die lag is 5 periodes wanneer 945 0.1 die lag is 10 periodes, en so aan. Vir 'n gegewe gemiddelde ouderdom (bv bedrag van lag), die eenvoudige eksponensiële gladstryking (SES) voorspelling is 'n bietjie beter as die eenvoudige bewegende gemiddelde (SMA) voorspel, want dit plaas relatief meer gewig op die mees onlangse waarneming --i. e. dit is 'n bietjie meer quotresponsivequot om veranderinge voorkom in die onlangse verlede. Byvoorbeeld, 'n SMA model met 9 terme en 'n SES model met 945 0.2 beide het 'n gemiddelde ouderdom van 5 vir die data in hul voorspellings, maar die SES model plaas meer gewig op die laaste 3 waardes as wel die SMA model en by die Terselfdertyd is dit doesn8217t heeltemal 8220forget8221 oor waardes meer as 9 tydperke oud was, soos getoon in hierdie grafiek: nog 'n belangrike voordeel van die SES model die SMA model is dat die SES model maak gebruik van 'smoothing parameter wat voortdurend veranderlike, so dit kan maklik new deur die gebruik van 'n quotsolverquot algoritme om die gemiddelde minimum te beperk kwadraat fout. Die optimale waarde van 945 in die SES model vir hierdie reeks blyk te wees 0,2961, soos hier gewys word: die gemiddelde ouderdom van die data in hierdie voorspelling is 1 / 0,2961 3.4 tydperke, wat soortgelyk is aan dié van 'n 6-termyn eenvoudige bewegende gemiddelde. Die langtermyn-voorspellings van die SES model is 'n horisontale reguit lyn. soos in die SMA model en die ewekansige loop model sonder groei. Let egter daarop dat die vertrouensintervalle bereken deur Stat Graphics nou divergeer in 'n redelike aantreklike mode, en dat hulle aansienlik nouer as die vertrouensintervalle vir die ewekansige loop model. Die SES model veronderstel dat die reeks is 'n bietjie quotmore predictablequot as wel die ewekansige loop model. 'N SES model is eintlik 'n spesiale geval van 'n ARIMA model. sodat die statistiese teorie van ARIMA modelle bied 'n goeie basis vir die berekening van vertrouensintervalle vir die SES model. In die besonder, 'n SES model is 'n ARIMA model met een nonseasonal verskil, 'n MA (1) termyn, en geen konstante term. andersins bekend as 'n quotARIMA (0,1,1) model sonder constantquot. Die MA (1) koëffisiënt in die ARIMA model stem ooreen met die hoeveelheid 1- 945 in die SES model. Byvoorbeeld, as jy 'n ARIMA (0,1,1) model inpas sonder konstante om die reeks te ontleed hier, die beraamde MA (1) koëffisiënt blyk te wees 0,7029, wat byna presies 'n minus 0,2961. Dit is moontlik om die aanname van 'n nie-nul konstante lineêre tendens voeg by 'n SES model. Om dit te doen, net 'n ARIMA model met een nonseasonal verskil en 'n MA (1) termyn met 'n konstante, dit wil sê 'n ARIMA (0,1,1) model met 'n konstante spesifiseer. Die langtermyn-voorspellings sal dan 'n tendens wat gelyk is aan die gemiddelde tendens waargeneem oor die hele skatting tydperk is. Jy kan dit nie doen in samewerking met seisoenale aanpassing, omdat die aanpassing opsies seisoenale is afgeskakel wanneer die model tipe is ingestel op ARIMA. Jy kan egter 'n konstante langtermyn eksponensiële tendens om 'n eenvoudige eksponensiële gladstryking model voeg (met of sonder seisoenale aanpassing) deur gebruik te maak van die opsie inflasie-aanpassing in die vooruitskatting prosedure. Die toepaslike quotinflationquot (persentasie groei) koers per periode kan geskat word as die helling koëffisiënt in 'n lineêre tendens model toegerus om die data in samewerking met 'n natuurlike logaritme transformasie, of dit kan op grond van ander, onafhanklike inligting oor die langtermyn groeivooruitsigte . (Terug na bo.) Browns Lineêre (dws dubbel) Eksponensiële glad die SMA modelle en SES modelle aanvaar dat daar geen tendens van enige aard in die data (wat gewoonlik OK of ten minste nie-te-sleg vir 1- stap-ahead voorspellings wanneer die data is relatief raserig), en hulle kan verander word om 'n konstante lineêre tendens inkorporeer soos hierbo getoon. Wat van kort termyn tendense As 'n reeks vertoon 'n wisselende koers van groei of 'n sikliese patroon wat uitstaan duidelik teen die geraas, en as daar 'n behoefte aan meer as 1 tydperk wat voorlê voorspel, dan skatting van 'n plaaslike tendens kan ook wees n probleem. Die eenvoudige eksponensiële gladstryking model veralgemeen kan word na 'n lineêre eksponensiële gladstryking (LES) model wat plaaslike begrotings van beide vlak en tendens bere te kry. Die eenvoudigste-time wisselende tendens model is Browns lineêr eksponensiële gladstryking model, wat twee verskillende reëlmatige reeks wat op verskillende punte gesentreer in die tyd gebruik. Die vooruitskatting formule is gebaseer op 'n ekstrapolasie van 'n streep deur die twee sentrums. ( 'N meer gesofistikeerde weergawe van hierdie model, Holt8217s, word hieronder bespreek.) Die algebraïese vorm van Brown8217s lineêr eksponensiële gladstryking model, soos dié van die eenvoudige eksponensiële gladstryking model, uitgedruk kan word in 'n aantal verskillende maar ekwivalente vorms. Die quotstandardquot vorm van hierdie model word gewoonlik uitgedruk as volg: Laat S dui die enkel-stryk reeks verkry deur die toepassing van eenvoudige eksponensiële gladstryking om reeks Y. Dit is, is die waarde van S op tydperk t gegee word deur: (Onthou dat, onder eenvoudige eksponensiële gladstryking, dit sou die voorspelling vir Y by tydperk T1 wees) Dan Squot dui die dubbel-stryk reeks verkry deur die toepassing van eenvoudige eksponensiële gladstryking (met behulp van dieselfde 945) tot reeks S:. ten slotte, die voorspelling vir Y tk. vir enige kgt1, word gegee deur: Dit lewer e 1 0 (dit wil sê kul n bietjie, en laat die eerste skatting gelyk wees aan die werklike eerste waarneming), en e 2 Y 2 8211 Y 1. waarna voorspellings gegenereer met behulp van die vergelyking hierbo. Dit gee dieselfde toegerus waardes as die formule gebaseer op S en S indien laasgenoemde is begin met behulp van S 1 S 1 Y 1. Hierdie weergawe van die model gebruik word op die volgende bladsy wat 'n kombinasie van eksponensiële gladstryking met seisoenale aanpassing illustreer. Holt8217s Lineêre Eksponensiële Smoothing Brown8217s LES model bere plaaslike begrotings van vlak en tendens deur glad die onlangse data, maar die feit dat dit nie so met 'n enkele glad parameter plaas 'n beperking op die data patrone wat dit in staat is om aan te pas: die vlak en tendens word nie toegelaat om wissel op onafhanklike tariewe. Holt8217s LES model spreek hierdie kwessie deur die insluiting van twee glad konstantes, een vir die vlak en een vir die tendens. Te eniger tyd t, soos in Brown8217s model, die daar is 'n skatting L t van die plaaslike vlak en 'n skatting T t van die plaaslike tendens. Hier is hulle rekursief bereken vanaf die waarde van Y op tydstip t en die vorige raming van die vlak en tendens waargeneem deur twee vergelykings wat eksponensiële gladstryking afsonderlik van toepassing op hulle. As die geskatte vlak en tendens op tydstip t-1 is L t82091 en T t-1. onderskeidelik, dan is die voorspelling vir Y tshy wat op tydstip t-1 sal gemaak is gelyk aan L t-1 T T-1. Wanneer die werklike waarde is waargeneem, is die opgedateer skatting van die vlak rekursief bereken deur interpol tussen Y tshy en sy voorspelling, L t-1 T T-1, die gebruik van gewigte van 945 en 1- 945. Die verandering in die geskatte vlak, naamlik L t 8209 L t82091. geïnterpreteer kan word as 'n lawaaierige meting van die tendens op tydstip t. Die opgedateer skatting van die tendens is dan rekursief bereken deur interpol tussen L t 8209 L t82091 en die vorige skatting van die tendens, T t-1. die gebruik van gewigte van 946 en 1-946: Die interpretasie van die tendens-glad konstante 946 is soortgelyk aan dié van die vlak glad konstante 945. Models met klein waardes van 946 aanvaar dat die tendens verander net baie stadig met verloop van tyd, terwyl modelle met groter 946 aanvaar dat dit vinniger is om te verander. 'N Model met 'n groot 946 is van mening dat die verre toekoms is baie onseker, omdat foute in die tendens-skatting word baie belangrik wanneer voorspel meer as een tydperk wat voorlê. (Terug na bo.) Die smoothing konstantes 945 en 946 kan in die gewone manier word beraam deur die vermindering van die gemiddelde kwadraat fout van die 1-stap-ahead voorspellings. Wanneer dit in Stat Graphics gedoen, die skattings uitdraai om te wees 945 0.3048 en 946 0,008. Die baie klein waarde van 946 beteken dat die model veronderstel baie min verandering in die tendens van een tydperk na die volgende, so basies hierdie model is besig om 'n langtermyn-tendens skat. Volgens analogie met die idee van die gemiddelde ouderdom van die data wat gebruik word in die skatte van die plaaslike vlak van die reeks, die gemiddelde ouderdom van die data wat gebruik word in die skatte van die plaaslike tendens is eweredig aan 1/946, hoewel nie presies gelyk aan Dit. In hierdie geval is dit blyk 1 / 0,006 125. Dit isn8217t n baie presiese aantal sover die akkuraatheid van die skatting van 946 isn8217t regtig 3 desimale plekke te wees, maar dit is van dieselfde algemene orde van grootte as die steekproefgrootte van 100 , so hierdie model is gemiddeld oor 'n hele klomp van die geskiedenis in die skatte van die tendens. Die voorspelling plot hieronder toon dat die LES model skat 'n effens groter plaaslike tendens aan die einde van die reeks as die konstante tendens geskat in die SEStrend model. Ook waarvan die beraamde waarde van 945 is byna identies aan die een wat deur die pas van die SES model met of sonder tendens, so dit is amper dieselfde model. Nou, doen hierdie lyk redelike voorspellings vir 'n model wat veronderstel is om te beraming 'n plaaslike tendens As jy hierdie plot 8220eyeball8221, dit lyk asof die plaaslike tendens afwaarts gedraai aan die einde van die reeks: Wat het die parameters van hierdie model gebeur is beraam deur die vermindering van die kwadraat fout van 1-stap-ahead voorspellings, nie langer termyn voorspellings, in welke geval die tendens 'n groot verskil doesn8217t maak. As alles wat jy is op soek na is 1-stap-ahead foute, is jy nie sien die groter prentjie van tendense oor (sê) 10 of 20 periodes. Ten einde hierdie model meer in harmonie te kry met ons oogbal ekstrapolasie van die data, kan ons met die hand die tendens-glad konstante pas sodat dit 'n korter basislyn vir tendens skatting. Byvoorbeeld, as ons kies om te stel 946 0.1, dan is die gemiddelde ouderdom van die gebruik in die skatte van die plaaslike tendens data is 10 periodes, wat beteken dat ons die gemiddeld van die tendens oor daardie laaste 20 periodes of so. Here8217s wat die voorspelling plot lyk asof ons '946 0.1 terwyl 945 0.3. Dit lyk intuïtief redelike vir hierdie reeks, maar dit is waarskynlik gevaarlik om hierdie tendens te ekstrapoleer nie meer as 10 periodes in die toekoms. Wat van die fout statistieke Hier is 'n model vergelyking vir die twee modelle hierbo asook drie SES modelle getoon. Die optimale waarde van 945.Vir die SES model is ongeveer 0,3, maar soortgelyke resultate (met 'n bietjie meer of minder 'n responsiewe ingesteldheid, onderskeidelik) verkry met 0,5 en 0,2. (A) Holts lineêre exp. glad met alfa 0,3048 en beta 0,008 (B) Holts lineêre exp. glad met alfa 0,3 en beta 0,1 (C) Eenvoudige eksponensiële gladstryking met alfa 0,5 (D) Eenvoudige eksponensiële gladstryking met alfa 0,3 (E) Eenvoudige eksponensiële gladstryking met alfa 0,2 hul statistieke is byna identies, so ons can8217t regtig die keuse te maak op die basis van 1-stap-ahead voorspelling foute binne die data monster. Ons het om terug te val op ander oorwegings. As ons glo dat dit sinvol om die huidige tendens skatting van wat die afgelope 20 periodes of so gebeur baseer, kan ons 'n saak vir die LES model met 945 0.3 en 946 0.1 maak. As ons wil hê agnostikus te wees oor die vraag of daar 'n plaaslike tendens, dan een van die SES modelle makliker om te verduidelik kan wees en sou ook vir meer middel-of-the-road voorspellings vir die volgende 5 of 10 periodes. (Terug na bo.) Watter tipe tendens-ekstrapolasie die beste: horisontale of lineêre empiriese bewyse dui daarop dat, indien die data is reeds aangepas (indien nodig) vir inflasie, dan is dit dalk onverstandig om kort termyn lineêre ekstrapoleer wees tendense baie ver in die toekoms. Tendense duidelik vandag mag verslap in die toekoms as gevolg van uiteenlopende oorsake soos produk veroudering, toenemende mededinging en sikliese afswaai of opwaartse fases in 'n bedryf. Om hierdie rede, eenvoudige eksponensiële gladstryking voer dikwels beter out-of-monster as wat dit andersins word verwag, ten spyte van sy quotnaivequot horisontale tendens ekstrapolasie. Gedempte tendens veranderinge van die lineêre eksponensiële gladstryking model word ook dikwels gebruik in die praktyk om 'n aantekening van konserwatisme in te voer in die tendens projeksies. Die gedempte-tendens LES model geïmplementeer kan word as 'n spesiale geval van 'n ARIMA model, in die besonder, 'n ARIMA (1,1,2) model. Dit is moontlik om vertrouensintervalle rondom langtermyn voorspellings wat deur eksponensiële gladstryking modelle bereken deur die oorweging van hulle as spesiale gevalle van ARIMA modelle. (Pasop: nie alle sagteware bereken vertrouensintervalle vir hierdie modelle korrek.) Die breedte van die vertrouensintervalle hang af van (i) die RMS fout van die model, (ii) die tipe glad (eenvoudige of lineêr) (iii) die waarde (s) van die smoothing konstante (s) en (iv) die aantal periodes voor jy voorspel. In die algemeen, die tussenposes versprei vinniger as 945 kry groter in die SES model en hulle uitgebrei, sodat baie vinniger as lineêre, eerder as eenvoudige smoothing gebruik. Hierdie onderwerp word verder in die ARIMA modelle deel van die notas bespreek. (Terug na bo.) Bewegende Gemiddeldes: Wat is dit vir die mees gewilde tegniese aanwysers, bewegende gemiddeldes word gebruik om die rigting van die huidige tendens meet. Elke tipe bewegende gemiddelde (algemeen in hierdie handleiding as MA geskryf) is 'n wiskundige gevolg dat word bereken deur die gemiddeld van 'n aantal van die verlede datapunte. Sodra bepaal, die gevolglike gemiddelde is dan geplot op 'n grafiek, sodat die handelaars om te kyk na reëlmatige data eerder as om te fokus op die dag-tot-dag prysskommelings wat inherent in alle finansiële markte is. Die eenvoudigste vorm van 'n bewegende gemiddelde, gepas bekend as 'n eenvoudige bewegende gemiddelde (SMA), word bereken deur die rekenkundige gemiddelde van 'n gegewe stel waardes. Byvoorbeeld, 'n basiese 10-dae - bewegende gemiddelde wat jy wil voeg tot die sluiting pryse van die afgelope 10 dae en dan verdeel die gevolg van 10. In Figuur 1 te bereken, die som van die pryse vir die afgelope 10 dae (110) is gedeel deur die aantal dae (10) om te kom op die 10-dae gemiddelde. As 'n handelaar wil graag 'n 50-dag gemiddelde sien in plaas daarvan, sal dieselfde tipe berekening gemaak word, maar dit sal die pryse sluit oor die afgelope 50 dae. Die gevolglike gemiddelde hieronder (11) in ag neem die afgelope 10 datapunte om handelaars 'n idee van hoe 'n bate relatiewe is geprys om die afgelope 10 dae te gee. Miskien is jy wonder hoekom tegniese handelaars noem hierdie hulpmiddel 'n bewegende gemiddelde en nie net 'n gewone gemiddelde. Die antwoord is dat as nuwe waardes beskikbaar is, moet die oudste datapunte laat val van die stel en nuwe data punte moet kom om dit te vervang. So, is die datastel voortdurend in beweging om rekenskap te gee nuwe data soos dit beskikbaar raak. Hierdie metode van berekening verseker dat slegs die huidige inligting word verreken. In Figuur 2, sodra die nuwe waarde van 5 word by die stel, die rooi boks (wat die afgelope 10 datapunte) na regs beweeg en die laaste waarde van 15 laat val van die berekening. Omdat die relatief klein waarde van 5 die hoë waarde van 15 vervang, sou jy verwag om die gemiddeld van die datastel afname, wat dit nie sien nie, in hierdie geval van 11 tot 10. Wat Moet Bewegende Gemiddeldes lyk as die waardes van die MA is bereken, hulle geplot op 'n grafiek en dan gekoppel aan 'n bewegende gemiddelde lyn te skep. Hierdie buig lyne is algemeen op die kaarte van tegniese handelaars, maar hoe dit gebruik word kan drasties wissel (meer hieroor later). Soos jy kan sien in Figuur 3, is dit moontlik om meer as een bewegende gemiddelde om enige term voeg deur die aanpassing van die aantal tydperke gebruik word in die berekening. Hierdie buig lyne kan steurende of verwarrend lyk op die eerste, maar jy sal groei gewoond aan hulle soos die tyd gaan aan. Die rooi lyn is eenvoudig die gemiddelde prys oor die afgelope 50 dae, terwyl die blou lyn is die gemiddelde prys oor die afgelope 100 dae. Nou dat jy verstaan wat 'n bewegende gemiddelde is en hoe dit lyk, goed in te voer 'n ander tipe van bewegende gemiddelde en kyk hoe dit verskil van die voorheen genoem eenvoudig bewegende gemiddelde. Die eenvoudige bewegende gemiddelde is uiters gewild onder handelaars, maar soos alle tegniese aanwysers, dit het sy kritici. Baie individue argumenteer dat die nut van die SMA is beperk omdat elke punt in die datareeks dieselfde geweeg, ongeag waar dit voorkom in die ry. Kritici argumenteer dat die mees onlangse data is belangriker as die ouer data en moet 'n groter invloed op die finale uitslag het. In reaksie op hierdie kritiek, handelaars begin om meer gewig te gee aan onlangse data, wat sedertdien gelei tot die uitvinding van die verskillende tipes van nuwe gemiddeldes, die gewildste van wat is die eksponensiële bewegende gemiddelde (EMA). (Vir verdere inligting, sien Basics gelaaide bewegende gemiddeldes en Wat is die verskil tussen 'n SMA en 'n EMO) Eksponensiële bewegende gemiddelde Die eksponensiële bewegende gemiddelde is 'n tipe van bewegende gemiddelde wat meer gewig gee aan onlangse pryse in 'n poging om dit meer ontvanklik maak om nuwe inligting. Leer die ietwat ingewikkeld vergelyking vir die berekening van 'n EMO kan onnodige vir baie handelaars wees, aangesien byna al kartering pakkette doen die berekeninge vir jou. Maar vir jou wiskunde geeks daar buite, hier is die EMO vergelyking: By die gebruik van die formule om die eerste punt van die EMO bereken, kan jy agterkom dat daar geen waarde beskikbaar is om te gebruik as die vorige EMO. Hierdie klein probleem opgelos kan word deur die begin van die berekening van 'n eenvoudige bewegende gemiddelde en die voortsetting van die bogenoemde formule van daar af. Ons het jou voorsien van 'n monster spreadsheet wat die werklike lewe voorbeelde van hoe om beide 'n eenvoudige bewegende gemiddelde en 'n eksponensiële bewegende gemiddelde te bereken sluit. Die verskil tussen die EMO en SMA Nou dat jy 'n beter begrip van hoe die SMA en die EMO bereken word, kan 'n blik op hoe hierdie gemiddeldes verskil. Deur te kyk na die berekening van die EMO, sal jy agterkom dat meer klem gelê op die onlangse data punte, maak dit 'n soort van geweegde gemiddelde. In Figuur 5, die nommers van tydperke wat in elk gemiddeld is identies (15), maar die EMO reageer vinniger by die veranderende pryse. Let op hoe die EMO het 'n hoër waarde as die prys styg, en val vinniger as die SMA wanneer die prys daal. Dit reaksie is die hoofrede waarom so baie handelaars verkies om die EMO gebruik oor die SMA. Wat doen die verskillende dae gemiddelde bewegende gemiddeldes is 'n heeltemal aanpas aanwyser, wat beteken dat die gebruiker vrylik kan kies watter tyd raam wat hulle wil wanneer die skep van die gemiddelde. Die mees algemene tydperke wat in bewegende gemiddeldes is 15, 20, 30, 50, 100 en 200 dae. Hoe korter die tydsduur wat gebruik word om die gemiddelde te skep, hoe meer sensitief sal wees om die prys veranderinge. Hoe langer die tydsverloop, hoe minder sensitief, of meer reëlmatige, die gemiddelde sal wees. Daar is geen regte tyd raam te gebruik wanneer die opstel van jou bewegende gemiddeldes. Die beste manier om uit te vind watter een werk die beste vir jou is om te eksperimenteer met 'n aantal verskillende tydperke totdat jy die een wat jou strategie pas te vind. Bewegende gemiddeldes: Hoe om dit te gebruik Skryf Nuus om te gebruik vir die nuutste insigte en ontleding Dankie vir jou inskrywing om Investopedia insigte - Nuus om eenvoudigste benadering use. The sou wees om die gemiddelde van Januarie neem tot Maart en gebruik dit om April8217s verkope te skat : (129 134 122) / 3 128,333 dus, gebaseer op die verkope van Januarie tot Maart, jy voorspel dat verkope in April 128333 sal wees. Sodra April8217s werklike verkope in te kom, sou jy dan bereken die voorspelling vir Mei, hierdie keer met behulp van Februarie tot April. Jy moet in ooreenstemming met die aantal periodes wat jy gebruik vir bewegende gemiddelde vooruitskatting wees. Die aantal periodes wat jy in jou bewegende gemiddelde voorspellings gebruik is arbitrêre jy mag slegs twee tydperke, of vyf of ses periodes wat ook al jy wil om jou voorspellings te genereer gebruik. bo die benadering is 'n eenvoudige bewegende gemiddelde. Soms, kan meer onlangse verkope months8217 wees sterker beïnvloeders van die komende month8217s verkope, so jy wil die nader maande meer gewig te gee in jou voorspelling model. Dit is 'n geweegde bewegende gemiddelde. En net soos die aantal periodes, die gewigte wat jy ken is bloot arbitrêre. Let8217s sê jy wou March8217s verkope gee 50 gewig, February8217s 30 gewig, en January8217s 20. Toe jou voorspelling vir April sal wees 127,000 (122,50) (134,30) (129,20) 127. Beperkings van bewegende gemiddelde metodes bewegende gemiddeldes word beskou as 'n 8220smoothing8221 voorspelling tegniek. Omdat you8217re neem 'n gemiddelde verloop van tyd, is jy sag (of glad uit) die gevolge van onreëlmatige gebeure binne die data. As gevolg hiervan, kan die gevolge van seisoenaliteit, sakesiklusse en ander ewekansige gebeure dramaties verhoog voorspelling fout. Neem 'n blik op 'n volle year8217s waarde van data, en vergelyk 'n 3-tydperk bewegende gemiddelde en 'n 5-tydperk bewegende gemiddelde: Let daarop dat in hierdie geval dat ek nie voorspellings het te skep nie, maar eerder gesentreer die bewegende gemiddeldes. Die eerste 3 maande bewegende gemiddelde is vir Februarie en it8217s die gemiddelde van Januarie, Februarie en Maart. Ek het ook 'n soortgelyke vir die 5-maande-gemiddelde. Nou 'n blik op die volgende grafiek: Wat doen jy sien is nie die drie-maande bewegende gemiddelde reeks baie gladder as die werklike verkope reeks en hoe oor die vyf maande bewegende gemiddelde It8217s selfs gladder. Dus, hoe meer tyd jy in jou bewegende gemiddelde gebruik, die gladder jou tyd reeks. Dus, vir vooruitskatting, 'n eenvoudige bewegende gemiddelde mag nie die mees akkurate metode wees. Bewegende gemiddelde metodes bewys baie waardevol wanneer you8217re probeer om die seisoenale, onreëlmatige, en sikliese komponente van 'n tydreeks te pak vir meer gevorderde voorspelling metodes, soos regressie en ARIMA, en die gebruik van bewegende gemiddeldes in ontbindende 'n tydreeks sal later aangespreek in die reeks. Die bepaling van die akkuraatheid van 'n bewegende gemiddelde Model Oor die algemeen, wil jy 'n vooruitskatting metode wat die minste foute tussen werklike en voorspelde resultate het. Een van die mees algemene maatstawwe van akkuraatheid voorspel die gemiddelde absolute afwyking (MAD). In hierdie benadering, vir elke tydperk in die tyd reeks waarvoor jy 'n voorspelling gegenereer, die absolute waarde van die verskil neem jou tussen wat period8217s werklike en geskatte waardes (die afwyking). Dan gemiddeld jy die absolute afwykings en jy kry 'n mate van jou verstand af. MAD kan nuttig wees in die besluit oor die aantal periodes wat jy gemiddeld en / of die hoeveelheid gewig wat jy op elke tydperk te plaas. Oor die algemeen, kies jy die een wat aanleiding gee tot die laagste MAD. Here8217s 'n voorbeeld van hoe MAD bereken: MAD is eenvoudig die gemiddeld van 8, 1, en 3. Bewegende Gemiddeldes: Recap By die gebruik van bewegende gemiddeldes vir vooruitskatting, onthou: bewegende gemiddeldes kan eenvoudig wees of geweeg Die aantal periodes wat jy gebruik vir jou gemiddelde, en enige gewigte jy toewys aan elke streng arbitrêre bewegende gemiddeldes glad onreëlmatige patrone in tydreeksdata hoe groter die aantal periodes gebruik word vir elke datapunt, hoe groter is die smoothing effek As gevolg van glad, voorspel volgende month8217s verkope gebaseer op die mees onlangse verkope paar month8217s kan lei tot groot afwykings as gevolg van seisoenaliteit, sikliese, en onreëlmatige patrone in die data en die smoothing vermoëns van 'n bewegende gemiddelde metode kan nuttig wees in die ontbindende 'n tydreeks vir meer gevorderde voorspelling metodes wees. Volgende Week: Eksponensiële Smoothing In volgende week8217s Voorspelling Vrydag. Ons sal eksponensiële gladstryking metodes te bespreek, en jy sal sien dat hulle baie beter as bewegende gemiddelde vooruitskatting metodes kan wees. Tog don8217t weet hoekom ons Voorspelling Vrydag poste op Donderdag verskyn Vind uit by: tinyurl / 26cm6ma Soos hierdie: Verwante Post navigasie Laat 'n antwoord Kanselleer antwoord ek het 2 vrae: 1) Kan jy die middelpunt MA benadering gebruik om te voorspel of net vir die verwydering van seisoenaliteit 2) as jy die eenvoudige t (t-1t-2t-k) / k MA gebruik om een tydperk wat voorlê voorspel, is dit moontlik om meer as 1 periode voor ek dink dan voorspel jou voorspelling sal een van die punte te voed in die wees volgende. Dankie. Wees lief vir die inligting en jou explanantions I8217m bly jy hou van die blog I8217m seker 'n hele paar ontleders het die gesentreerde MA benadering vir vooruitskatting gebruik, maar ek sou persoonlik nie, want dit benadering lei tot 'n verlies van waarnemings aan beide kante. Dit eintlik dan bande in jou tweede vraag. Oor die algemeen, is eenvoudig MA gebruik word om net een tydperk wat voorlê voorspel, maar baie ontleders 8211 en ek soms 8211 sal my een-tydperk wat voorlê voorspel as een van die insette tot die tweede tydperk wat voorlê gebruik. It8217s belangrik om die verdere onthou in die toekoms sal jy probeer om te voorspel, hoe groter is jou risiko van voorspelling fout. Dit is die rede waarom ek nie gesentreer MA vir vooruitskatting 8211 die verlies van waarnemings aan die einde beteken om te vertrou op voorspellings vir die verlore waarnemings, asook die tydperk (e) wat voorlê nie beveel, so daar is 'n groter kans om voorspelling fout. Lesers: you8217re genooi om weeg op hierdie. Het jy enige gedagtes of voorstelle oor hierdie Brian, dankie vir jou kommentaar en jou komplimente op die blog Nice inisiatief en mooi verduideliking. It8217s werklik nuttig. Ek voorspel persoonlike printed circuit boards vir 'n kliënt wat nie enige voorspellings gee nie. Ek gebruik die bewegende gemiddelde, maar dit is nie baie akkuraat as die bedryf kan styg en af. Ons sien in die rigting middel van die somer na die einde van die jaar wat gestuur pcb8217s is up. Dan sien ons aan die begin van die jaar vertraag pad af. Hoe kan ek meer akkuraat met my data Katrina, uit wat jy my vertel het nie, blyk dit jou gedrukte stroombaan verkope het 'n seisoenale komponent. Ek het aan te spreek seisoenaliteit in 'n paar van die ander Voorspelling Vrydag poste. Nog 'n benadering wat jy kan gebruik, wat is redelik maklik, is die Holt-Winters algoritme, wat rekening hou met seisoenaliteit. Jy kan 'n goeie verduideliking van dit hier vind. Maak seker om te bepaal of jou seisoenale patrone is multiplikatiewe of toevoeging, omdat die algoritme is effens anders vir elke. As jy jou maandelikse data plot van 'n paar jaar en sien dat die seisoenale variasies op dieselfde tyd, van jare lyk konstante jaar meer as jaar wees, dan is die seisoen is toevoeging as die seisoenale variasies met verloop van tyd blyk te wees aan die toeneem, dan is die seisoen is multiplikatiewe. Die meeste seisoenale tydreekse sal multiplikatiewe wees. As jy twyfel, neem vermenigvuldigingseienskap. Sterkte Hi daar, Tussen dié metode:. Skip vooruitskatting. Opdatering van die gemiddelde. Bewegende gemiddelde lengte k. Óf Geweegde bewegende gemiddelde lengte k of eksponensiële Smoothing Watter een van daardie opdatering modelle doen jy aanbeveel my gebruik van die data vir my mening bied voorspel, ek dink oor bewegende gemiddelde. Maar ek don8217t weet hoe om dit duidelik te maak en gestruktureer Dit hang af van die hoeveelheid en gehalte van die data wat jy het en jou voorspelling horison (langtermyn, mid-term, of kort termyn)
No comments:
Post a Comment